Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biophys Chem ; 307: 107166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232602

RESUMEN

Spread layers of amorphous aggregates of the structural domain of plant protein vicilin, cupin-1.1, at the water - air interface were studied by the surface tensiometry, dilational surface rheology, Brewster angle and atomic force microscopy. The layer properties differed strongly from the results for the layers of previously studied proteins. The dependency of the dynamic elasticity of the layer on surface pressure had two local maxima with the second peak being four times higher than the first one. In the region of the first maximum the obtained results are similar to those for dispersions of polymer microgels with a hairy corona. At the beginning of surface compression separate threads of the corona are stretched along the surface and the surface elasticity increases. The further compression results in the formation of loops and tails leading to a decrease of the elasticity. The second local maximum of the dynamic surface elasticity is presumably caused by the interactions of the rigid cores of the aggregates leading finally to the formation of multilayer structures at high surface pressures. In this case, the surface elasticity starts to decrease as a result of the segment exchange between different layers at the interface.


Asunto(s)
Proteínas de Plantas , Agua , Agua/química , Propiedades de Superficie , Reología , Elasticidad , Adsorción
2.
Front Microbiol ; 14: 1211999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029097

RESUMEN

Introduction: Serratia marcescens is most commonly known as an opportunistic pathogen causing nosocomial infections. It, however, was shown to infect a wide range of hosts apart from vertebrates such as insects or plants as well, being either pathogenic or growth-promoting for the latter. Despite being extensively studied in terms of virulence mechanisms during human infections, there has been little evidence of which factors determine S. marcescens host specificity. On that account, we analyzed S. marcescens pangenome to reveal possible specificity factors. Methods: We selected 73 high-quality genome assemblies of complete level and reconstructed the respective pangenome and reference phylogeny based on core genes alignment. To find an optimal pipeline, we tested current pangenomic tools and obtained several phylogenetic inferences. The pangenome was rich in its accessory component and was considered open according to the Heaps' law. We then applied the pangenome-wide associating method (pan-GWAS) and predicted positively associated gene clusters attributed to three host groups, namely, humans, insects, and plants. Results: According to the results, significant factors relating to human infections included transcriptional regulators, lipoproteins, ABC transporters, and membrane proteins. Host preference toward insects, in its turn, was associated with diverse enzymes, such as hydrolases, isochorismatase, and N-acetyltransferase with the latter possibly exerting a neurotoxic effect. Finally, plant infection may be conducted through type VI secretion systems and modulation of plant cell wall synthesis. Interestingly, factors associated with plants also included putative growth-promoting proteins like enzymes performing xenobiotic degradation and releasing ammonium irons. We also identified overrepresented functional annotations within the sets of specificity factors and found that their functional characteristics fell into separate clusters, thus, implying that host adaptation is represented by diverse functional pathways. Finally, we found that mobile genetic elements bore specificity determinants. In particular, prophages were mainly associated with factors related to humans, while genetic islands-with insects and plants, respectively. Discussion: In summary, functional enrichments coupled with pangenomic inferences allowed us to hypothesize that the respective host preference is carried out through distinct molecular mechanisms of virulence. To the best of our knowledge, the presented research is the first to identify specific genomic features of S. marcescens assemblies isolated from different hosts at the pangenomic level.

3.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958507

RESUMEN

Outer membrane proteins (Omps) of Gram-negative bacteria represent porins involved in a wide range of virulence- and pathogenesis-related cellular processes, including transport, adhesion, penetration, and the colonization of host tissues. Most outer membrane porins share a specific spatial structure called the ß-barrel that provides their structural integrity within the membrane lipid bilayer. Recent data suggest that outer membrane proteins from several bacterial species are able to adopt the amyloid state alternative to their ß-barrel structure. Amyloids are protein fibrils with a specific spatial structure called the cross-ß that gives them an unusual resistance to different physicochemical influences. Various bacterial amyloids are known to be involved in host-pathogen and host-symbiont interactions and contribute to colonization of host tissues. Such an ability of outer membrane porins to adopt amyloid state might represent an important mechanism of bacterial virulence. In this work, we investigated the amyloid properties of the OmpC and OmpF porins from two species belonging to Enterobacteriaceae family, Escherichia coli, and Salmonella enterica. We demonstrated that OmpC and OmpF of E. coli and S. enterica form toxic fibrillar aggregates in vitro. These aggregates exhibit birefringence upon binding Congo Red dye and show characteristic reflections under X-ray diffraction. Thus, we confirmed amyloid properties for OmpC of E. coli and demonstrated bona fide amyloid properties for three novel proteins: OmpC of S. enterica and OmpF of E. coli and S. enterica in vitro. All four studied porins were shown to form amyloid fibrils at the surface of E. coli cells in the curli-dependent amyloid generator system. Moreover, we found that overexpression of recombinant OmpC and OmpF in the E. coli BL21 strain leads to the formation of detergent- and protease-resistant amyloid-like aggregates and enhances the birefringence of bacterial cultures stained with Congo Red. We also detected detergent- and protease-resistant aggregates comprising OmpC and OmpF in S. enterica culture. These data are important in the context of understanding the structural dualism of Omps and its relation to pathogenesis.


Asunto(s)
Proteínas de Escherichia coli , Salmonella enterica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Salmonella enterica/metabolismo , Rojo Congo/metabolismo , Detergentes , Proteínas de Escherichia coli/metabolismo , Porinas/metabolismo , Péptido Hidrolasas/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761974

RESUMEN

Salmonella enterica is a bacterial pathogen known to cause gastrointestinal infections in diverse hosts, including humans and animals. Despite extensive knowledge of virulence mechanisms, understanding the factors driving host specificity remains limited. In this study, we performed a comprehensive pangenome-wide analysis of S. enterica to identify potential loci determining preference towards certain hosts. We used a dataset of high-quality genome assemblies grouped into 300 reference clusters with a special focus on four host groups: humans, pigs, cattle, and birds. The reconstructed pangenome was shown to be open and enriched with the accessory component implying high genetic diversity. Notably, phylogenetic inferences did not correspond to the distribution of affected hosts, as large compact phylogenetic groups were absent. By performing a pangenome-wide association study, we identified potential host specificity determinants. These included multiple genes encoding proteins involved in distinct infection stages, e.g., secretion systems, surface structures, transporters, transcription regulators, etc. We also identified antibiotic resistance loci in host-adapted strains. Functional annotation corroborated the results obtained with significant enrichments related to stress response, antibiotic resistance, ion transport, and surface or extracellular localization. We suggested categorizing the revealed specificity factors into three main groups: pathogenesis, resistance to antibiotics, and propagation of mobile genetic elements (MGEs).


Asunto(s)
Salmonella enterica , Humanos , Animales , Bovinos , Porcinos , Salmonella enterica/genética , Especificidad del Huésped , Filogenia , Antibacterianos , Transporte Iónico
5.
Toxins (Basel) ; 15(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37755994

RESUMEN

Bacterial organisms have undergone homologous recombination (HR) and horizontal gene transfer (HGT) multiple times during their history. These processes could increase fitness to new environments, cause specialization, the emergence of new species, and changes in virulence. Therefore, comprehensive knowledge of the impact and intensity of genetic exchanges and the location of recombination hotspots on the genome is necessary for understanding the dynamics of adaptation to various conditions. To this end, we aimed to characterize the functional impact and genomic context of computationally detected recombination events by analyzing genomic studies of any bacterial species, for which events have been detected in the last 30 years. Genomic loci where the transfer of DNA was detected pertained to mobile genetic elements (MGEs) housing genes that code for proteins engaged in distinct cellular processes, such as secretion systems, toxins, infection effectors, biosynthesis enzymes, etc. We found that all inferences fall into three main lifestyle categories, namely, ecological diversification, pathogenesis, and symbiosis. The latter primarily exhibits ancestral events, thus, possibly indicating that adaptation appears to be governed by similar recombination-dependent mechanisms.

6.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629113

RESUMEN

Although incurable pathologies associated with the formation of highly ordered fibrillar protein aggregates called amyloids have been known for about two centuries, functional roles of amyloids have been studied for only two decades. Recently, we identified functional amyloids in plants. These amyloids formed using garden pea Pisum sativum L. storage globulin and vicilin, accumulated during the seed maturation and resisted treatment with gastric enzymes and canning. Thus, vicilin amyloids ingested with food could interact with mammalian proteins. In this work, we analyzed the effects of vicilin amyloids on the fibril formation of proteins that form pathological amyloids. We found that vicilin amyloids inhibit the fibrillogenesis of these proteins. In particular, vicilin amyloids decrease the number and length of lysozyme amyloid fibrils; the length and width of ß-2-microglobulin fibrils; the number, length and the degree of clustering of ß-amyloid fibrils; and, finally, they change the structure and decrease the length of insulin fibrils. Such drastic influences of vicilin amyloids on the pathological amyloids' formation cause the alteration of their toxicity for mammalian cells, which decreases for all tested amyloids with the exception of insulin. Taken together, our study, for the first time, demonstrates the anti-amyloid effect of vicilin fibrils and suggests the mechanisms underlying this phenomenon.


Asunto(s)
Amiloide , Pisum sativum , Animales , Proteínas de Almacenamiento de Semillas , Insulina , Insulina Regular Humana , Mamíferos
7.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511040

RESUMEN

The Special Issue "Protein-Based Infection, Inheritance, and Memory" includes a set of experimental and review papers covering different aspects of protein memory, infection, and inheritance [...].

8.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498920

RESUMEN

The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.


Asunto(s)
Aves de Corral , Salmonella , Animales , Humanos , Salmonella/genética , Virulencia/genética , Especificidad del Huésped , Enterobacteriaceae , Mamíferos
9.
Front Plant Sci ; 13: 1014699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388578

RESUMEN

Amyloids represent protein aggregates with highly ordered fibrillar structure associated with the development of various disorders in humans and animals and involved in implementation of different vital functions in all three domains of life. In prokaryotes, amyloids perform a wide repertoire of functions mostly attributed to their interactions with other organisms including interspecies interactions within bacterial communities and host-pathogen interactions. Recently, we demonstrated that free-living cells of Rhizobium leguminosarum, a nitrogen-fixing symbiont of legumes, produce RopA and RopB which form amyloid fibrils at cell surface during the stationary growth phase thus connecting amyloid formation and host-symbiont interactions. Here we focused on a more detailed analysis of the RopB amyloid state in vitro and in vivo, during the symbiotic interaction between R. leguminosarum bv. viciae with its macrosymbiont, garden pea (Pisum sativum L.). We confirmed that RopB is the bona fide amyloid protein since its fibrils exhibit circular x-ray reflections indicating its cross-ß structure specific for amyloids. We found that fibrils containing RopB and exhibiting amyloid properties are formed in vivo at the surface of bacteroids of R. leguminosarum extracted from pea nodules. Moreover, using pea sym31 mutant we demonstrated that formation of extracellular RopB amyloid state occurs at different stages of bacteroid development but is enhanced in juvenile symbiosomes. Proteomic screening of potentially amyloidogenic proteins in the nodules revealed the presence of detergent-resistant aggregates of different plant and bacterial proteins including pea amyloid vicilin. We demonstrated that preformed vicilin amyloids can cross-seed RopB amyloid formation suggesting for probable interaction between bacterial and plant amyloidogenic proteins in the nodules. Taken together, we demonstrate that R. leguminosarum bacteroids produce extracellular RopB amyloids in pea nodules in vivo and these nodules also contain aggregates of pea vicilin amyloid protein, which is able to cross-seed RopB fibrillogenesis in vitro. Thus, we hypothesize that plant nodules contain a complex amyloid network consisting of plant and bacterial amyloids and probably modulating host-symbiont interactions.

10.
Biomolecules ; 12(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291718

RESUMEN

We report the discovery of a new abscisic acid (ABA) metabolite, found in the course of a mass spectrometric study of ABA metabolism by the rhizosphere bacterium Rhodococcus sp. P1Y. Analogue of (+)-ABA, enriched in tritium in the cyclohexene moiety, was fed in bacterial cells, and extracts containing radioactive metabolites were purified and analyzed to determine their structure. We obtained mass spectral fragmentation patterns and nuclear magnetic resonance spectra of a new metabolite of ABA identified as 1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexene-1-acetic acid, which we named rhodococcal acid (RA) and characterized using several other techniques. This metabolite is the second bacterial ABA degradation product in addition to dehydrovomifoliol that we described earlier. Taken together, these data reveal an unknown ABA catabolic pathway that begins with side chain disassembly, as opposed to the conversion of the cyclohexene moiety in plants. The role of ABA-utilizing bacteria in interactions with other microorganisms and plants is also discussed.


Asunto(s)
Ácido Abscísico , Ácido Acético , Ácido Abscísico/metabolismo , Tritio , Transformación Bacteriana , Extractos Vegetales
11.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682936

RESUMEN

The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Bacterias/genética , Biología Computacional/métodos , Recombinación Homóloga , Filogenia
12.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768745

RESUMEN

Insoluble protein aggregates with fibrillar morphology called amyloids and ß-barrel proteins both share a ß-sheet-rich structure. Correctly folded ß-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that ß-barrel proteins can adopt cross-ß amyloid folds have emerged. Different ß-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by ß-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with ß-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the ß-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The ß-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming ß-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming ß-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of ß-folds.


Asunto(s)
Amiloide/fisiología , Agregado de Proteínas/fisiología , Conformación Proteica en Lámina beta/fisiología , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloidosis/metabolismo , Humanos , Simulación de Dinámica Molecular , Agregado de Proteínas/genética
13.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502157

RESUMEN

In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.


Asunto(s)
Evolución Biológica , Magnoliopsida/fisiología , Desarrollo de la Planta , Semillas/crecimiento & desarrollo , Semillas/genética , Proliferación Celular , Metabolismo Energético , Ambiente , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Semillas/anatomía & histología
14.
Toxins (Basel) ; 13(5)2021 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34065665

RESUMEN

Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides' safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants.


Asunto(s)
Toxinas de Bacillus thuringiensis/administración & dosificación , Bacillus thuringiensis/patogenicidad , Agentes de Control Biológico/administración & dosificación , Animales , Toxinas de Bacillus thuringiensis/toxicidad , Agentes de Control Biológico/toxicidad , Ecosistema , Humanos , Insecticidas/administración & dosificación , Insecticidas/toxicidad , Control Biológico de Vectores/métodos , Fenotipo
15.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668147

RESUMEN

Bacillus thuringiensis, commonly referred to as Bt, is an object of the lasting interest of microbiologists due to its highly effective insecticidal properties, which make Bt a prominent source of biologicals. To categorize the exuberance of Bt strains discovered, serotyping assays are utilized in which flagellin serves as a primary seroreactive molecule. Despite its convenience, this approach is not indicative of Bt strains' phenotypes, neither it reflects actual phylogenetic relationships within the species. In this respect, comparative genomic and proteomic techniques appear more informative, but their use in Bt strain classification remains limited. In the present work, we used a bottom-up proteomic approach based on fluorescent two-dimensional difference gel electrophoresis (2D-DIGE) coupled with liquid chromatography/tandem mass spectrometry(LC-MS/MS) protein identification to assess which stage of Bt culture, vegetative or spore, would be more informative for strain characterization. To this end, the proteomic differences for the israelensis-attributed strains were assessed to compare sporulating cultures of the virulent derivative to the avirulent one as well as to the vegetative stage virulent bacteria. Using the same approach, virulent spores of the israelensis strain were also compared to the spores of strains belonging to two other major Bt serovars, namely darmstadiensis and thuringiensis. The identified proteins were analyzed regarding the presence of the respective genes in the 104 Bt genome assemblies available at open access with serovar attributions specified. Of 21 proteins identified, 15 were found to be encoded in all the present assemblies at 67% identity threshold, including several virulence factors. Notable, individual phylogenies of these core genes conferred neither the serotyping nor the flagellin-based phylogeny but corroborated the reconstruction based on phylogenomics approaches in terms of tree topology similarity. In its turn, the distribution of accessory protein genes was not confined to the existing serovars. The obtained results indicate that neither gene presence nor the core gene sequence may serve as distinctive bases for the serovar attribution, undermining the notion that the serotyping system reflects strains' phenotypic or genetic similarity. We also provide a set of loci, which fit in with the phylogenomics data plausibly and thus may serve for draft phylogeny estimation of the novel strains.


Asunto(s)
Bacillus thuringiensis/clasificación , Proteínas Bacterianas/metabolismo , Flagelina/metabolismo , Proteoma/metabolismo , Serotipificación/métodos , Factores de Virulencia/metabolismo , Virulencia , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidad , Proteínas Bacterianas/genética , Cromatografía Liquida , Flagelina/genética , Filogenia , Proteoma/análisis , Espectrometría de Masas en Tándem , Factores de Virulencia/genética
16.
Biomolecules ; 11(3)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668728

RESUMEN

The phytohormone abscisic acid (ABA) plays an important role in plant growth and in response to abiotic stress factors. At the same time, its accumulation in soil can negatively affect seed germination, inhibit root growth and increase plant sensitivity to pathogens. ABA is an inert compound resistant to spontaneous hydrolysis and its biological transformation is scarcely understood. Recently, the strain Rhodococcus sp. P1Y was described as a rhizosphere bacterium assimilating ABA as a sole carbon source in batch culture and affecting ABA concentrations in plant roots. In this work, the intermediate product of ABA decomposition by this bacterium was isolated and purified by preparative HPLC techniques. Proof that this compound belongs to ABA derivatives was carried out by measuring the molar radioactivity of the conversion products of this phytohormone labeled with tritium. The chemical structure of this compound was determined by instrumental techniques including high-resolution mass spectrometry, NMR spectrometry, FTIR and UV spectroscopies. As a result, the metabolite was identified as (4RS)-4-hydroxy-3,5,5-trimethyl-4-[(E)-3-oxobut-1-enyl]cyclohex-2-en-1-one (dehydrovomifoliol). Based on the data obtained, it was concluded that the pathway of bacterial degradation and assimilation of ABA begins with a gradual shortening of the acyl part of the molecule.


Asunto(s)
Ácido Abscísico/metabolismo , Ciclohexanonas/metabolismo , Rizosfera , Rhodococcus/metabolismo , Regulación de la Expresión Génica de las Plantas , Espectroscopía de Resonancia Magnética , Reguladores del Crecimiento de las Plantas/metabolismo
17.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008049

RESUMEN

Amyloids are fibrillar protein aggregates with an ordered spatial structure called "cross-ß". While some amyloids are associated with development of approximately 50 incurable diseases of humans and animals, the others perform various crucial physiological functions. The greatest diversity of amyloids functions is identified within prokaryotic species where they, being the components of the biofilm matrix, function as adhesins, regulate the activity of toxins and virulence factors, and compose extracellular protein layers. Amyloid state is widely used by different pathogenic bacterial species in their interactions with eukaryotic organisms. These amyloids, being functional for bacteria that produce them, are associated with various bacterial infections in humans and animals. Thus, the repertoire of the disease-associated amyloids includes not only dozens of pathological amyloids of mammalian origin but also numerous microbial amyloids. Although the ability of symbiotic microorganisms to produce amyloids has recently been demonstrated, functional roles of prokaryotic amyloids in host-symbiont interactions as well as in the interspecies interactions within the prokaryotic communities remain poorly studied. Here, we summarize the current findings in the field of prokaryotic amyloids, classify different interspecies interactions where these amyloids are involved, and hypothesize about their real occurrence in nature as well as their roles in pathogenesis and symbiosis.


Asunto(s)
Amiloide/genética , Amiloidosis/genética , Bacterias/genética , Toxinas Biológicas/genética , Bacterias/patogenicidad , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Humanos , Células Procariotas/metabolismo
18.
PLoS Biol ; 18(7): e3000564, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32701952

RESUMEN

Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved ß-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.


Asunto(s)
Amiloide/metabolismo , Pisum sativum/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/metabolismo , Amiloide/ultraestructura , Detergentes/farmacología , Escherichia coli/metabolismo , Iones , Pancreatina/metabolismo , Pisum sativum/efectos de los fármacos , Pepsina A/metabolismo , Agregado de Proteínas , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Saccharomyces cerevisiae/metabolismo , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/farmacología , Proteínas de Almacenamiento de Semillas/ultraestructura
19.
Toxins (Basel) ; 12(3)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210056

RESUMEN

Bacillus thuringiensis (Bt) is a natural pathogen of insects and some other groups of invertebrates that produces three-domain Cry (3d-Cry) toxins, which are highly host-specific pesticidal proteins. These proteins represent the most commonly used bioinsecticides in the world and are used for commercial purposes on the market of insecticides, being convergent with the paradigm of sustainable growth and ecological development. Emerging resistance to known toxins in pests stresses the need to expand the list of known toxins to broaden the horizons of insecticidal approaches. For this purpose, we have elaborated a fast and user-friendly tool called CryProcessor, which allows productive and precise mining of 3d-Cry toxins. The only existing tool for mining Cry toxins, called a BtToxin_scanner, has significant limitations such as limited query size, lack of accuracy and an outdated database. In order to find a proper solution to these problems, we have developed a robust pipeline, capable of precise 3d-Cry toxin mining. The unique feature of the pipeline is the ability to search for Cry toxins sequences directly on assembly graphs, providing an opportunity to analyze raw sequencing data and overcoming the problem of fragmented assemblies. Moreover, CryProcessor is able to predict precisely the domain layout in arbitrary sequences, allowing the retrieval of sequences of definite domains beyond the bounds of a limited number of toxins presented in CryGetter. Our algorithm has shown efficiency in all its work modes and outperformed its analogues on large amounts of data. Here, we describe its main features and provide information on its benchmarking against existing analogues. CryProcessor is a novel, fast, convenient, open source (https://github.com/lab7arriam/cry_processor), platform-independent, and precise instrument with a console version and elaborated web interface (https://lab7.arriam.ru/tools/cry_processor). Its major merits could make it possible to carry out massive screening for novel 3d-Cry toxins and obtain sequences of specific domains for further comprehensive in silico experiments in constructing artificial toxins.


Asunto(s)
Toxinas de Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Agentes de Control Biológico/química , Minería de Datos/métodos , Endotoxinas/química , Proteínas Hemolisinas/química , Control Biológico de Vectores , Algoritmos , Secuencia de Aminoácidos , Animales , Toxinas de Bacillus thuringiensis/biosíntesis , Benchmarking , Endotoxinas/biosíntesis , Proteínas Hemolisinas/biosíntesis , Insectos/efectos de los fármacos , Cadenas de Markov
20.
Cells ; 9(3)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210065

RESUMEN

The garden pea (Pisum sativum L.) is a legume crop of immense economic value. Extensive breeding has led to the emergence of numerous pea varieties, of which some are distinguished by accelerated development in various stages of ontogenesis. One such trait is rapid seed maturation, which, despite novel insights into the genetic control of seed development in legumes, remains poorly studied. This article presents an attempt to dissect mechanisms of early maturation in the pea line Sprint-2 by means of whole transcriptome RNA sequencing in two developmental stages. By using a de novo assembly approach, we have obtained a reference transcriptome of 25,756 non-redundant entries expressed in pea seeds at either 10 or 20 days after pollination. Differential expression in Sprint-2 seeds has affected 13,056 transcripts. A comparison of the two pea lines with a common maturation rate demonstrates that while at 10 days after pollination, Sprint-2 seeds show development retardation linked to intensive photosynthesis, morphogenesis, and cell division, and those at 20 days show a rapid onset of desiccation marked by the cessation of translation and cell anabolism and accumulation of dehydration-protective and -storage moieties. Further inspection of certain transcript functional categories, including the chromatin constituent, transcription regulation, protein turnover, and hormonal regulation, has revealed transcriptomic trends unique to specific stages and cultivars. Among other remarkable features, Sprint-2 demonstrated an enhanced expression of transposable element-associated open reading frames and an altered expression of major maturation regulators and DNA methyltransferase genes. To the best of our knowledge, this is the first comparative transcriptomic study in which the issue of the seed maturation rate is addressed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pisum sativum/crecimiento & desarrollo , Pisum sativum/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Transcriptoma/genética , Análisis por Conglomerados , Anotación de Secuencia Molecular , Dinámicas no Lineales , Reguladores del Crecimiento de las Plantas/biosíntesis , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...